6.1 Solving Systems of Linear Equations Using Matrices

* Augmented Matrices

Matrix (plural: Matrices): a shortened way of writing a system of equations. $\underline{M \times N}$ Matrix: a matrix has M rows and N columns.

Matrix elements are denoted: $a_{i j}$
Ex. Element a_{23} is in row 2, column 3.

Ex. Write the augmented matrix for each system of linear equations.
a.) $\left\{\begin{array}{l}5 x-y=1 \\ 3 x+2 y=24\end{array}\right.$
b.) $\left\{\begin{array}{l}x-2 y+z=10 \\ 3 x+y=5 \\ 7 x+2 z=2\end{array}\right.$

Ex. Write the system of linear equations represented by the augmented matrix.

$$
\left[\begin{array}{ccc|c}
7 & 0 & 4 & -13 \\
0 & 1 & -5 & 11 \\
2 & 7 & 0 & 6
\end{array}\right]
$$

* Solving Linear Systems Using Gauss-Jordan Elimination

Solving a system of equations: find values of the variables that make all the equations true.

Three possible outcomes when solving a system of equations:
1.) One unique solution (Sec. 6.1)
2.) No Solution (Sec. 6.2)
3.) Infinite number of solutions (Sec. 6.2)

Solving a System of Equations Using Gauss-Jordan Elimination: use various "row operations" to change the augmented matrix into reduced row-echelon form.

Reduced Row-Echelon Form:

$$
\begin{array}{cc}
{\left[\begin{array}{ll|l}
1 & 0 & a \\
0 & 1 & b
\end{array}\right]}
\end{array} \text { or }\left[\begin{array}{lll|l}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c
\end{array}\right]
$$

The acceptable elementary row operations are:

1.) Swap an entire row with another row: $R_{i} \leftrightarrow R_{j}$
2.) Multiply a row by a non-zero constant: $k R_{i}$
3.) Multiply a row by a non-zero constant and add it to another row: $k R_{i}+R_{j}$

Ex. Solve each system of equations using Gauss-Jordan Elimination. State the solution.
a.) $\left\{\begin{array}{l}-2 x+6 y=-14 \\ x-5 y=13\end{array}\right.$

Hint \#1:

You can create a ONE by multiplying your row by the reciprocal.

Hint \#2:

You can create a ZERO by multiplying the pivot row by the opposite and adding to your row.

$$
\text { b.) }\left\{\begin{array}{l}
3 y-z=-1 \\
x+5 y-z=-4 \\
-3 x+6 y+2 z=11
\end{array}\right.
$$

Ex. (\#62) Sylvia invested a total of $\$ 40,000$. She invested part of the money in a certificate of deposit (CD) that earns 2% simple interest per year. She invested in a stock that returns the equivalent of 8% simple interest, and she invested in a bond fund that returns 5\%. She invested twice as much in the stock as she did in the CD, and earned a total of $\$ 2300$ at the end of 1 year. How much principal did she put in each investment?

